Nutrition, growth and development 2009

Friday 11.9: Aud 3-13

09.00-10.15: Lecture: Nutrition of the fetus. 10.25-11.00: Lecture: Fetal nutritional insults – does it matter? 11.15-12.00: Lecture: Nutritional physiology of the newborn.

eneral:

Valutifion through the life cycle. 3d.ed. Judith E. Brown et al. 2007 Thomson Vadsworth, USA. Selected literature and articles. Nordic Nutrition lecommendations 2004 Chanter 1 (Wutrient reg. across life stages)

Developmental nutrition/program Primary literature:

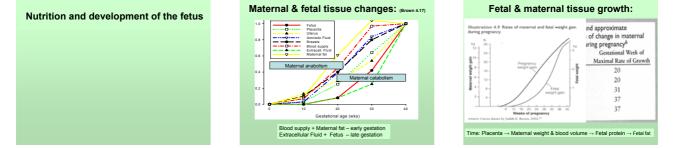
Brown et al., Ch 4 p 97 - 99. The origin of the developmental origins theory, DJP Barker J Int Med 2007 412-417. Epidemiology, genes and---, JG Eriksson. J Int Med 2007 418-425.

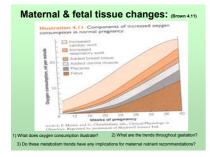
Petus Network Milk replacer Meat F Nutrients – Am FI Mother's milk Processed anim

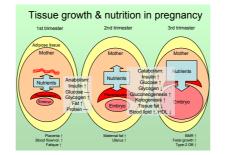
Why?

Changes in organ anatomy/physiology (e.g. GIT, liver, pancreas
 - Altered growth of tissues/organs
 - Altered discond site sets/organs
 - Altered disease sensitivity of tissues/organs

Developmental nutrition research


LONG TERM STUDIES:


- It takes too long to investigate (PhD programs are 3 years!)
 - The long time factor makes experiment uncontrollable
 - Cell function changes over the course of an experiment
 RESULT: Nutritional advice based on epidemiology and traditi

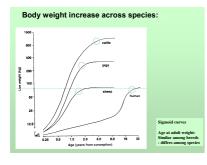


Topics of ongoing PhD projects (children/piglets):

- Colostrum or mature milk for preterm newborns?
- Optimal lipid and protein in preterm formulas?
- Enteral nutrition of children after gut resection?
- Antibiotics or probiotics to prevent gut disease?
- Can milk bioactives prevent preterm gut disease?
- Enteral versus parenteral nutrition in preterms?
- Stimulation of fetal development before birth?
- Nutrition for children with leukaemia?
- What is the role of amniotic fluid before birth?
- Is lactose goood or bad in infant formula?

Table 4.6 Summary of maternal an pregnancy ^{7,8,11}	abolic and catabolic phases of
Maternal Anabolic Phase 0-20 Weeks	Maternal Catabolic Phase 20+ Weeks
Blood volume expansion, increased cardiac output	Mobilization of fat and nutrient stores
Buildup of fat, nutrient, and liver glycogen stores	Increased production and blood levels of glucose, triglycerides, and fatty acids; decreased liver glycogen stores
Growth of some maternal organs	Accelerated fasting metabolism
Increased appetite, food intake (positive caloric balance)	Increased appetite and food intake decline somewhat near term
Decreased exercise tolerance	Increased exercise tolerance
Increased levels of anabolic hormones	Increased levels of catabolic hormones

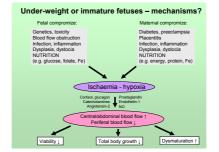
Maternal and fetal weight gain:


	Table 4.16 Pregnancy w recommendat	sight gain ions ³¹
1	Proprognancy Weight Status	Recommended Gain*
< 1	Underweight, BMI <19.8	28-40 lb (12.7-18.2 k)
y Weight Status	Normal weight, BMI 19.8-26.0	25-35 lb (11.4-15.9 k
Under Normal Over	Overweight, BMI >26.0-29.0	15-25 lb (6.8-11.4 kg
bese ry Obese	Obese, BMI >29.0	15 lb (6.8 kg) at least
50	Twin pregnancy	35-45 lb (15.9-20.5 k
9		CONTRACTOR DURING STREET
I.E. Brown, O 1988.	"Young adviescents should achieve g short women at the lower end.	ins at the upper end of ranges,
rweight mothers nortality	\rightarrow lower birth weight \rightarrow	

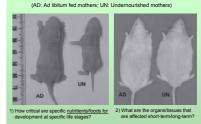
Placental nutrient transfer:

Key Nutrition Concepts - Fetus

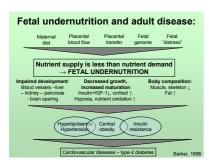
- Periods of rapid growth and development of fetal organs and tissues occur during specific times during pregnancy.
- Essential nutrients must be available in required amounts during these times for fetal growth and development to proceed optimally.
- The (human) fetus is not a "parasite"

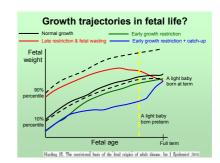


	RA	TES	
	1995	2001	Definition
Maternal mortality	7.1	7.1	Deaths/100,000 line births
Fetal deaths (stillbirths)	7.0	6.6	Deaths/1000 pregnancies over 20 weeks gestation
Perinatal mortality	7.6	7.0	Deaths/1000 deliveries over 20 weeks gestation to 7 days after birth
Neonatal mortality	4.9	4.6	Deaths from delivery to 28 days/1000 live births
Postseonatal mortality	2.7	2.3	Deaths from 28 days after birth to 1 year/1000 live births
Infant mortality	7.6	6.8	Deaths from birth to age 1 year/1000 live births
Preterm	11.0	11.8	Births <37 wreks gestation/100 live births
Very preterm	1.9	1.9	Births <34 weeks gestation/100 live births
Low birthweight	7.3	7.8	Newborn weights <2500 g (5 lb 8 oz)/100 live births
Very low birthweight	1.4	1.5	Newborn weights <1500 g (3 lb 4 oz)/100 live births
Multifetal pregnancies			
Twins	1 in 40	1 in 34	Number of twin births/total live births
Triplets+	1 in 784	1 in 555	Number of triplets plus higher-order multiple birthshotal live births
Adolescent pregnancies	56.8	45.9	Births /1000 females aged 15 to 19 years


Diseases and	low birth weight:
Table 4.14 Diseases and adults relate at birth ^{26,47}	l other conditions in d to smallness or thinness
Allergies Autoimmune diseases Bronchitis Cardiovascular disease Decreased bone mineral content Gestational diabetes Hypertension	Mood disorders Obesity Ovarian cancer Polycystic ovary syndrome Schizophrenia Short stature Stroke Stroke Subfertility in males
Kidney disease Metabolic syndrome	Suicide Type 2 diabetes

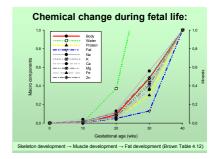
"Developmental Origins of Adult Disease" - "Barker Hypothesis"

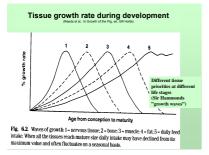

Table 4.15 Association of of cardiovascu Nurses Study ⁴	lar disease in th	th the ri ie U.S.
BIRTHWEIGHT	RELATIVE R	ISK OF:
	Heart Disease	Stroke
<5 lb (2240 g)	1.5	2.3
5-5½ lb (2240-2500 g)	1.3	1.4
5½-7 lb (2500-3136 g)	1.1	1.3
7-8½ lb (3136-3808 g)	1.0	1.0
81/-10 lb (3808-4480 g)	1.0	1.0
>10 lb (>4480 g)	0.7	0.7


Fetal undernutrition - later obesity and type-2 diabetes

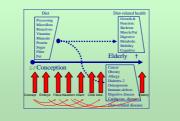
Breier, Krechowec & Vickers, 2006: Programming of Obesity – Expe In Early Life Origins of Health and Disease, Wintour & Owen, eds.

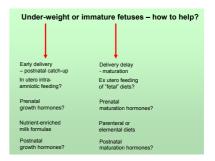
Early malnourishment and later diabetes ris	sk
in nutrition transition	
THIN MOTHER	
Undermourished	
child and young adult	
LOW BIRTHWEIGHT BABY	
'Thrifty phenotype'	
INSULIN RESISTANCE	
+	
URBANISATION	
Adult obesity	
MORE INSULIN RESISTANCE	
+	
MOTHER	
Hyperglycaemia	
'MACROSOMIC' BABY	
÷	
REDUCED B-CELL FUNCTION	
+	
NIDDM	Barker, 19


Body Growth and Development · Critical periods


- hyperplasia
- hyperplasia and hypertrophy
 hypertrophy
- maturation
- Body composition Differential increases in fat, protein minerals

- Growth/cell proliferation in different tissues:


 No stop during the life time intestinal/skin epithelia
 Growth arrest but ability to re-adapt (liver, muscle, heart)
 Complete stop of growth (skeleton, nervous system)


able 4.12 Estimat	pregnancy ^{11,2}	9 9	sition of the	fecus by
Component	10 Weeks	20 Weeks	30 Weeks	40 Weeks
Body weight, g	10	300	1667	3450
Water, g	<9	263	1364	700
Protein, g	<1	22	134	446
Fat, g	<1	26	66	525
Sodium, meq	<1	32	136	243
Potassium, meq	<1	12	75	170
Calcium, g	<1	1	10	28
Magnesium, mg	<1	5	31	76
Iron, mg	<1	17	104	278
Zinc, mg	<1	6	26	53



Early Nutrition – Later disease:

Birth and its complications **Crowth & maturation – not the same Untritional transition at birth Crowth & maturation – not the same Difference in the same Difference in the same Difference in the same Difference in the same Difference in the same Differe**

4

Energy stores in newborn infants and animals er. 199

Species	Weight birth (kg)	Fat store (g/kg)	Muscle glycogen (g/kg)	Liver glycogen (g/kg)
Humans	3.5	(160)	7.5	3.8
Guinea P.	0.1	110	4.5	5.5
Rabbit	0.05	58	2.3	2.7
Sheep	4.5	30	8.8	2.2
Pig	1.3	11	20.9	2.1
Rat	0.005	11	1.8	5.8

Time and terms, pre- and postnatally

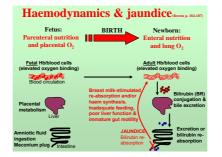
Table 4.3 Range of birthweig	this by gestational age. L	1.21	
BIRTHWEIGHT		WEEKS	INFANT MORTALITY RATE
Pounds (Ib) and Ounces (az)	Grams		
<1 lb 2 oz	<500	<22	846
1 lb 2 oz-2 lb 3 oz	500-999	22-27	316
2 lb 3 oz-3 lb 5 oz	1000-1499	27-29	62
3 lb 5 oz-4 lb 6 oz	1500-1999	29-31	28
4 lb 6 oz-5 lb 8 oz	2000-2499	31-33	12
5 lb 8 oz-6 lb 10 oz	2500-2999	33-36	4.6
6 lb 10 cz-7 lb 11 cz	3000-3499	36-40	2.4
7 lb 11 oz-8 lb 13 cz	3500-3999	40+	1.7
8 lb 13 oz-9 lb 14 oz	4000-4499	40+	1.5
9 lb 14 ce-11 lb	4500-4999	40+	2.5
>11 lb	5000+	40+	_

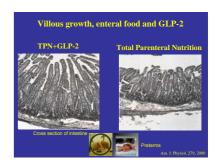
Infants at Risk

- · Low birthweight infants
- Preterm infants born before 34 weeks of gestation
- · Infants born with consequences of abnormal development
- Infants at risk for chronic health
 problems
- Families of infants with special health care needs

Navn	Fødsel	Problem	IQ
	årstal	v/fødsel	ca.
Johannes Kepler	1571	7 mdr. graviditet	160
Isaac Newton	1642	Vægt: 1,5 kg	170
F.M. de Voltaire	1694	Ingen vejrtrækning	180
Johann Goethe	1749	Tilsynelad. dødfødt	200
Winston Churchill	1874	7½ mdr. graviditet	-
Pablo Picasso	1881	Tilsynelad. dødfødt	-

lable II.6 How info	int formulas are modified compared to breast	milt	
ACRONA/TRIEN	TS BASAST HILS	OW'S-MILK-BASED	FORMULA
Prosein	7% of calories	9.12%	
Carbohydrates	38% of calories	41-43%	39.41%
Fam	53% of calories	48-30%	45-49%
07540	WAYS INFANT FORMULAS ARE HODIFS	ID COMPANYO TO AN	ATT MILE
What Is Modified	How is is Modified	Examples from Two M	
Calorie level	Increase in colories from 20 colories/fl on to 22 or 24 colories/fl or the preteres infannet.	EnfoCare Lipit in 22 co Nemlac with Iron 24 in	BorievII oz. 24 calorievII oz.
Form of pronain	Protein in broken down to short artimo acid fragmonts (hydrolyard protein) or zato angle antino acids. Searce of protein changed.	Similar Nerseant Advance has amino acide. Enfantil Narisemigen has hydrodysed milk promin. Promoher has hydrodysed woy protein is plaze of milk-based protein.	
type of mager	Latitute is replaced by other sugars, such as mersue or glucour polymers from various carbolydeate assesses.	Enfamil Eactoffsee has factors replaced by corn errors induk (which provides glucose). Pressolve has carbody-drams from over symp solids. Neither has marrow or factors.	
fige of fac	Long-chain fatty acids partially replaced with medium-chain fatty acids (MCT) and assarie of fat changed.	Progratimil has about 1 fam, repfaced by a min Enfamil Nutreamgen h has vegetable oils in pl	new of sugarable cds. as no MCT cd, but new of animal based for
they funder and	Replacement of milk-based promis with protein from supbeam or suplacement of whole proteins with amino mild fragments or ningle amino neide.	Similar bound and Ind milk protein replaced b	
Micromotriconte	Increased calcium and phosphorus concentration for preterm infans, Decrement minorshir related to read function, Added exercisid fatty acids (see above), Lover supplemental iron,	Enfamil Premanarel, pi Similar PM 40240 n m phenpheran, and in line Similar Special Care A iron Reemalia sold only infann.	odified in calcium, r in iron. Brance 24 is a low- to hospitals for protects
		Ratand Low Iron and lower levels of iron the formals.	Similae Low Iron have in the standard
Thickness	Added rise or liber for gamesimatinal problems	Similar bornd D.J. (DF short term usery if has a Enformed A.B. has adde	daled filter from are
har of infant	Target age (h-12 months	Similar hourd Advance	
	Target age 3-24 months	Number Issued 2	




Key Nutrition Concepts

- · Early nutrition services and other interventions
- Early nutrition services and other interventions can improve long-term health and growth among infants born with a variety of conditions.
 The number of infants requiring specialized nutrition and health care is increasing due to the improved survival rates of small and sick periodexes newborns.
- Infants who are born preterm or who are sick early in life often require nutritional assessment and interventions that ensure they are meeting their nutritional needs for growth and development.

Key Nutrition Concepts

- Nutrient requirements of term newborns have to be modified for preterm infants.
- Knowing the needs of sick and small newborns results in greater understanding of the complex nutritional needs of all newborns and infants.
- Changing feeding practices, such as the care of infants outside the home and the early introduction of foods, markedly affect nutritional status of infants.

